Перейти к основному содержанию

page search

Community Organizations MDPI Online, Open Access Journals
MDPI Online, Open Access Journals
MDPI Online, Open Access Journals
Acronym
MDPI
Publishing Company
Phone number
+41 61 683 77 34

Location

St. Alban-Anlage 66
Basel
Basel-Stadt
Switzerland
Working languages
English

MDPI AG, a publisher of open-access scientific journals, was spun off from the Molecular Diversity Preservation International organization. It was formally registered by Shu-Kun Lin and Dietrich Rordorf in May 2010 in Basel, Switzerland, and maintains editorial offices in China, Spain and Serbia. MDPI relies primarily on article processing charges to cover the costs of editorial quality control and production of articles. Over 280 universities and institutes have joined the MDPI Institutional Open Access Program; authors from these organizations pay reduced article processing charges. MDPI is a member of the Committee on Publication Ethics, the International Association of Scientific, Technical, and Medical Publishers, and the Open Access Scholarly Publishers Association (OASPA).

Members:

Resources

Displaying 811 - 815 of 1524

Forest Land Quality Evaluation and the Protection Zoning of Subtropical Humid Evergreen Broadleaf Forest Region Based on the PSO-TOPSIS Model and the Local Indicator of Spatial Association: A Case Study of Hefeng County, Hubei Province, China

Peer-reviewed publication
декабря, 2020
China

Forest land is the carrier for growing forests. It is of great significance to evaluate the forest land quality scientifically and delineate forestland protection zones reasonably for realizing better forest land management, promoting ecological civilization construction, and coping with global climate change.

Analysis of the Social-Ecological Causes of Deforestation and Forest Degradation in Ghana: Application of the DPSIR Framework

Peer-reviewed publication
декабря, 2020
Ghana

Globally, forests provide several functions and services to support humans’ well-being and the mitigation of greenhouse gases (GHGs). The services that forests provide enable the forest-dependent people and communities to meet their livelihood needs and well-being. Nevertheless, the world’s forests face a twin environmental problem of deforestation and forest degradation (D&FD), resulting in ubiquitous depletion of forest biodiversity and ecosystem services and eventual loss of forest cover.

Effects of Vegetation Type on Soil Shear Strength in Fengyang Mountain Nature Reserve, China

Peer-reviewed publication
декабря, 2020
China

Shear strength is an important mechanical property of soil, as its mechanical function plays critical roles in reducing land degradation and preventing soil erosion. However, shear strength may be affected by vegetation type through changes in the soil and root patterns. To understand the influences of different types of vegetation on shear strength, the soil shear indices of three typical vegetation types (broad-leaved forest, coniferous broad-leaved mixed forest, and grassland) were studied and evaluated at the Fengyang Mountain Nature Reserve, China.

Wood Products for Cultural Uses: Sustaining Native Resilience and Vital Lifeways in Southeast Alaska, USA

Peer-reviewed publication
декабря, 2020
Global

Ongoing revitalization of the >5000-year-old tradition of using trees for vital culture and heritage activities including carving and weaving affirms Alaska Native resilience. However, support for these sustained cultural practices is complicated by environmental and political factors. Carving projects typically require western redcedar (Thuja plicata) or yellow cedar (Callitropsis nootkatensis) trees more than 450 years of age—a tree life stage and growth rate inconsistent with current even-aged forest management strategies.

Ecosystem Services Changes on Farmland in Response to Urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area of China

Peer-reviewed publication
декабря, 2020
China

Extensive urbanization around the world has caused a great loss of farmland, which significantly impacts the ecosystem services provided by farmland. This study investigated the farmland loss due to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China from 1980 to 2018 based on multiperiod datasets from the Land Use and Land Cover of China databases. Then, we calculated ecosystem service values (ESVs) of farmland using valuation methods to estimate the ecosystem service variations caused by urbanization in the study area.