Resource information
Numerous studies have focused on vegetation traits and soil properties in grassland, few of which concerned about effects of human utilization patterns on grassland yet. Thus, this study hypothesized that human disturbance (e.g., grazing, mowing and fencing) triggered significant variation of biomass partitioning and carbon reallocation. Besides, there existed some differences of species diversity and soil fertility. To address these hypotheses of grassland with diverse utilization patterns in Hulun Buir City, Inner Mongolia, China, we sampled in situ about aboveground biomass (AGB) and belowground biomass (BGB) to evaluate their biomass allocation. Species diversity and soil properties were also investigated. Subsequently, we discussed the relationship of species diversity with environmental conditions, using data collected from 23 sites during the ecological project period of Returning Grazing Lands to Grasslands (RGLG) program. The results were as follows: 1) both AGB and BGB were lower on grazing regime than those on fencing and mowing, but the ratio of root-to-shoot (R/S) was higher on grazing regime than the other two utilization patterns; 2) neither of evenness and Simpson Index was different significantly among all grassland utilization patterns in desert, typical, and meadow grassland at 0.05. In meadow grassland, species richness of fencing pattern was significantly higher than that of grazing pattern (p